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A B S T R A C T

Being uncertain about relevant information produces costs for economic
agents in several ways, both directly and indirectly. In this thesis, I study
how the direct costs — the costs associated not to any outcome of a lottery
but to the participation in a lottery in the first place — of being uncertain
should, or can, be reasonably modeled.

I first argue that a naive micro-economic approach to quantifying such
costs — using the theory of insurance — has a number of problems. I then
propose to use the Shannon entropy from information theory as an alterna-
tive measure of direct uncertainty costs and I motivate this proposal both
formally, by introducing axioms that single out the Shannon entropy, and
conceptually, by arguing that this quantity naturally measures the expected
uncertainty costs for economic tasks that require an lagent to react differ-
ently to different events.

I then present two applications of these results: First, I apply them to
transaction cost economics, where I argue, both theoretically and by giving
empirical support, that uncertainty cost is a quantity that co-determines the
decision of a firm whether to integrate part of its supply chain or not. Sec-
ondly, I apply them to decision theory, where I present an alternative to
the expected utility hypothesis as a decision criterion, and show that this
alternative naturally solves Allais’, Rabin’s and the Ellsberg Paradox.

Along the way, I also clarify the (often blurred) distinction between (non-
Knightian) uncertainty and risk and show that the mathematical concept of
majorization naturally quantifies the two notions and makes their relationship
precise.
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1
I N T R O D U C T I O N

There are many types of uncertainty. In an economics setting, a manager
might be uncertain about the consumer demand for the good which her
company produces; Or she might be uncertain about the quality of some
production factor that is provided by one of her suppliers; Or she might not
know whether her employees actually work as hard as they say; Or whether
her business partner is bluffing. In one way or another, these various ways of
being uncertain produce costs and it would be both interesting and valuable
to be able to model those costs. However, it seems silly at best to think that
there is a single formalism that covers all these various types of uncertainty
costs, since they arise via different mechanisms.

This thesis focuses on one such type of uncertainty cost. In particular, I
will be concerned with the costs that arise directly from being in a state of
uncertainty, or, in other words, those costs that would be absent in a situation
that is the same as the original situation except that there is no uncertainty.

What are such direct costs and how are they relevant for economics? To
illustrate the idea, consider a principal-agent type exchange between two
parties in which one party (the agent) has some information A relevant to
the exchange that is unknown to the other (the principal). In order to decide
her strategy, the principal therefore has to act on the basis of a probability
distribution p over the possible values of A, where this distribution repre-
sents the principal’s best guess concerning the actual value of the informa-
tion. Now, the way in which p usually enters models of decision making is
that the principal decides her strategy based on maximizing her expected
utility under p (e.g. [Sch99; Var14]). Now, if this was the only way in which
p enters a model, then this would imply that all distributions that induce
the same expected utility are equivalent from the point of view the principal
and hence that she behaves in the same way when confronted with any of
these distributions.

But this is an unrealistic implication! In the real world, different probabil-
ity distributions come with different associated costs. Consider, for example,
the case in which the principal is a manager and the agent a supplier of
goods to the company run by the principal. Then A could be information
about the type of the agent that determines the quality of the goods sup-
plied. In this setting, it is easy to envision a scenario in which A can take
three values - “lazy”, “normal”, “eager” - and in which the utility function

1



1.1 setup and notation 2

of the principal is such that the expected utility of the supplier being nor-
mal with probability 1 equals the expected utility of the supplier being lazy
and eager with probability 0.5 each. However, in the latter case the princi-
pal will have to act differently depending on whether the supplier turns out
to be lazy or eager in order to realize her utility for each of the two respec-
tive types, and hence will on average waste some resources for preparatory
measures towards an event that never occurs (she might for example insure
herself against the supplier being lazy when in fact he is eager). In contrast,
in the former case, there are no such costs, because the manager already has
full information about the supplier’s type. The resources that a rational eco-
nomic agent will spend when faced with uncertain situations like the above
are exactly what I call the direct costs of uncertainty and the aim of this thesis
is to develop a formal and conceptual account for these costs.

The structure of the thesis is as follows: I will start off by presenting the
way in which I believe standard micro-economic theory would go about
modeling the above uncertainty costs and discuss its problems (Sec. 2). Part
of this section will be a discussion about the relationship between the notions
of risk and uncertainty, where I show that these notions are conceptually
distinct but mathematically related via the notion of majorization. I will then
present an alternative account that does not have those problems (Sec. 3). In
particular, I will introduce axioms that single out the Shannon entropy [Sha48]
as the only function that adequately quantifies the direct costs of uncertainty.
I also discuss how to understand, in an economics context, why this function
is particularly suitable to measure uncertainty cost. Then, I apply these re-
sults to two different fields of economics: First, I will apply them to the field
of transaction cost economics, and argue, both theoretically and by giving
empirical support, that uncertainty cost is a quantity that co-determines the
decision of a firm whether to integrate part of its supply chain or not (Sec. 4).
Secondly, I will apply the results of Section 3 to decision theory, where I use
them to present an alternative to the expected utility hypothesis and show
that this alternative naturally solves Allais’, Rabin’s and the Ellsberg Paradox
(Sec. 5). I close with a summary and outlook (Sec. 6).

1.1 setup and notation

Before I start, let me first introduce the formalism that will be used through-
out the remainder of the thesis. All that I want to say can be phrased in terms
of lotteries.1 Lotteries are an important tool in game, contract, and decision

1 For notational and conceptual convenience, I will keep the discussion to discrete random vari-
ables, however modulo some technical subtleties everything can be extended to continuous
random variables.



1.1 setup and notation 3

theory, where they are used to model the behavior of agents under uncer-
tainty or risk [Var14]. Formally, a lottery l is a finite and ordered set of out-
comes A = (a1, . . . ,an) together with associated probabilities of occurrence
pi such that pi > 0 for all i and

P
i
pi = 1. In other words, it corresponds

to a random variable Xl such that Prob(X = ai) = pi. For convenience, I
will assume, without loss of generality, that A ⇢ Rn, so that the outcomes
ai can be interpreted as payouts. Moreover, again w.l.o.g., I will assume that
a1 > a2 > · · · > an. Then, Ln = �n ⇥ Rn,# is the set of lotteries with n

outcomes. Here, �n is the n-dimensional simplex, which describes the set of
n-dimensional probability vectors pT = (p1, . . . ,pn) and Rn,# is the space of
non-increasingly ordered elements of Rn. Hence, one can represent lotteries
as tuples l ⌘ (p,A). Note that Ln is convex with respect to the natural addi-
tion operation inherited from its component vector spaces, so that, for any
� 2 [0, 1] and l,m 2 Ln, �l+(1-�)m = (�pl+(1-�)pm, �Al+(1-�)Am) 2
Ln. However, Ln is not closed under more general affine sums, since nei-
ther Rn,# nor �n are. Denote L =

S
n2N Ln and � =

S
n2N �n. Finally,

E(l) =
P

i
piai is the expectation value of a lottery and all logarithms are

base 2.
Throughout the thesis, I will also discuss different orderings. An ordering

over a set S is a relation (�,S) ✓ S⇥ S, usually denotes by (�,S) or simply
�. For any such ordering and elements l,m,k 2 S, l ⇠ m denotes l � m^

m � l. An ordering is called a pre-order if it is reflexive (l � l, 8l), and
transitive (l � k^ k � m ) l � m); It is called a partial ordering if it is a
pre-order and antisymmetric (l ⇠ m ) l = m); It is called a total ordering
if it is a partial ordering and complete (l � m_m � l). Finally, the notion
of an order-preserving function will be important. A function g : L ! R is
order-preserving for an ordering � if l � m ) g(l) > g(m). If -g is order-
preserving, then g is called order-reversing.



2
H O W T O M O D E L U N C E RTA I N T Y C O S T — T H E W R O N G
WAY

We want to know how we should quantify the direct costs of uncertainty. In
terms of the above notation, this question can be phrased as the question:
How should we model the direct costs of uncertainty for a decision maker
faced with a given lottery l. That is, does there exist a function f : L ! R, or
potentially a whole family of such functions, that adequately models these
costs?

2.1 defining uncertainty

To answer this question, I should first clarify what I mean by uncertainty.
The direct uncertainty costs that I want to quantify are those that arise for
an economic agent due to the fact that her knowledge about future events
is limited. It therefore seems natural to say that one random variable (or
lottery) is more uncertain than another if its outcomes are more difficult
to predict than those of the other. To make this precise, let � be a measure
defined over the set B of Borel subsets of Rn. For a random variable X taking
values in Rn, let

A(X;p) = {A 2 B : Prob(X 2 A) > p}

and

µ(X,p) = inf
A2A(X;p)

�(A).

Whilst scary to read, these definitions are actually very simple: The Borel
subsets are simply all subsets of Rn with a well-defined volume under �

(think the length of any line segment on R with respect to the uniform mea-
sure). The set A(X;p) is then the set of of all regions of Rn for which one can
say that the outcome of X lies in that region with “confidence” probability p.
So what µ(X,p) measures is the smallest region in Rn of which I can predict
with confidence p that X will lie in it.

Definition 1 (Uncertainty) A random variable X is more uncertain than an-
other Y, written X >U Y, if µ(X,p) > µ(Y,p) for all p 2 (0, 1).

4



2.2 uncertainty cost as risk premium 5

Clearly, the ordering >U induces an ordering on L, defined as l �U m ,
Xl 6U Xm. And it seems the minimum to require for any reasonable un-
certainty cost function f that it respects this ordering, in the sense that
l �U m ) f(l) 6 f(m) (see Sec. 3.1).

2.2 uncertainty cost as risk premium

Having clarified the notion of uncertainty that we will be concerned with,
let me first consider what a micro-economist would probably take to be the
correct answer. I think that he would say that f(l) is best modeled by the risk
premium of a full and actuarially fair insurance that a risk averse player P faced
with the lottery l would choose.

Let me unpack this statement. To begin with, the micro-economist would
assume that P has a (Bernoulli) utility function u : R ! R. Next, he would
moreover assume the expected utility hypothesis:

expected utility hypothesis (euh) Given a choice between lotteries,
a decision maker will prefer the lottery that maximizes his expected
utility under u.

Formally, the EUH says that there exists an ordering (�u,L) that repre-
sents P’s preference between lotteries and that this ordering is given by

l �u m , Eu(l) > Eu(m) ⌘
X

i=1

p
(l)
i

u(a(l)
i

) >
X

i=1

p
(m)
i

u(a(m)
i

),

where I have implicitly defined the function Eu as the expected utility of a
lottery.

Now, note first that, given u, and assuming that the latter is strictly mono-
tonically increasing — a reasonable assumption —, for any lottery l, there
exists a unique number RP such that

u(E(l)- RP) = Eu(l) (1)

and we can find this number, since from the strict monotonicity of u it
follows that the inverse u

-1 is well defined. But the LHS of this equation
can be interpreted as the expected utility of a trivial and unique1 lottery
l̂ = (p(l̂) = (1, 0, . . . , 0),A(l̂) = (E(l)- RP, 0 . . . , 0)) with payout E(l)- RP.
By construction, Eu(l̂) = Eu(l). Hence, given EUH, it follows that l̂ ⇠u l, or
in words, that P is indifferent between the two lotteries. But this means that

1 This is the first time the restriction to Rn,# becomes apparent, since otherwise l̂ would be
specified only up to permutation. This theme runs through the thesis: A pre-order on vector
spaces will be turned into partial order by considering only the quotient space with respect
to permutations. I will not usually discuss technical aspects such as this one in the main text.



2.3 problems 6

P would be willing to pay RP to swap the lottery l that involves uncertainty
against the lottery l̂ that involves no uncertainty but whose certain payout is
E(l)- RP. Now, RP is called the risk premium and it is textbook theory that
a fair insurance (one without expected returns) will offer such a swap at the
price RP and that a P whose preferences follow the EUH will accept this
offer [Var14]. Hence, since the only effect of this swap for P (remember, his
expected utility remains unchanged) is to remove the uncertainty from the
lottery, it seems reasonable to claim that f(l) = RP(l), that is, that the cost of
uncertainty should be modeled by the risk premium.

The final part of the unpacking of the above statement is to understand
why, according to the micro-economist, our P needs to be risk averse. The
reasoning is this: So far, we haven’t ensured that RP is non-negative. But
surely that should be the case, if it is to model the cost of uncertainty. No-
body should be able to make money off of (their own) uncertainty. Hence,
we require that RP(l) > 0 for all lotteries l. But this yields

E(l) > â , u(E(l)) > u(â) = Eu(l̂) = Eu(l) = E(u(l)), (2)

where we again used the strict monotonicity of u which implies x > y ,
u(x) > u(y) with equality only for x = y. But it is the content of the very
useful Jensen’s inequality that the right part of (2), u(E(l)) > E(u(l)) is
true if and only if u is concave. Moreover, having a concave Bernoulli utility
function is the definition of being risk averse. Hence, to ensure positivity of
uncertainty costs, P should be risk averse, and we now understand every
word in the economist’s claim.

2.3 problems

This story goes down well and sounds very reasonable. Unfortunately, I
think that it is highly unsatisfactory, for at least three reasons that I will
discuss in this subsection.

Firstly, it seems to me that the risk premium approach conceptually over-
loads the utility function by requiring it to capture both the degree of risk
aversion as well as the uncertainty cost that arises as a result of a given lot-
tery. As an indication of this problem it suffices to note that surely a hedge
fund, packed with risk affine guys in shirt sleeves, suffers from costs due to
not being able to predict the future just like everybody else does. By mod-
eling uncertainty costs via concave Bernoulli utility functions, one seems to
remove the possibility of modeling uncertainty costs for risk affine players.

Secondly, for the risk premium to be more than just an academic mea-
sure of uncertainty cost, it would have to be the case that either all economic
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agents constantly insure themselves in every lottery they face, or there is rea-
son to think that the costs of an insurance for a lottery are also the costs for
a player in case she does not insure herself. But neither of these two is true.
The costs of insuring oneself against every possible lottery are prohibitive, so
only very few lotteries will actually be covered by insurances. Indeed, I think
it’s clear that the vast majority of realistic lotteries could not be covered by
insurances at all, simply because there is no appealing market for insurances:
Who would insure you against the manager of the other company being a
choleric type, or against Trump’s tweets? Moreover, there is no reason at all
in the above story for why the risk premium should also be a good measure
of the uncertainty cost in situations where no insurance applies. So at best
the above risk premium approach could only apply to a very small subset of
economic interactions.

Thirdly, and most importantly, the above approach mixes up the notions of
risk and uncertainty. Luckily, the relationship between risk and uncertainty
can be made conceptually and formally very clear, so that we can understand
very clearly how and why the risk premium breaks down. However, to do
so requires a bit of preparation.

2.3.1 Uncertainty is not risk

Given two lotteries, which one is riskier?2 This question was answered to
general satisfaction in a celebrated series of papers by Michael Rothschild
and (the then young) Joseph Stiglitz in 1970 and 1971 [RS70; RS71]. They
showed that three intuitive ways of comparing the riskiness of lotteries with
the same expectation value boil down to one and the same thing. Let me first
introduce them. Importantly, they all apply only to lotteries with the same
expectation value. In terms of lotteries, the first way says that m should
be considered riskier than l if m is “l plus noise”. Formally, let Xl be the

2 In economics, the distinction between risk and uncertainty has a long tradition that goes
back to [Kni21]. In this seminal book, Knight argued that much of economics is driven by in-
herently unquantifiable, at best estimate-driven knowledge. This type of knowledge is what
Knight called “uncertainty” and juxtaposed it to the notion of “risk” which concerned quan-
tifiable, probabilistic knowledge. Historically, Knight’s distinction stands at the beginning of
a splitting into schools of thought about how Knightian uncertainty should be dealt with
in economics, a splitting that was roughly co-aligned with the Neoclassical and Keynesian
schools [Köh17, Ch.2]. However, Knight’s distinction is not what I’m concerned with here!
This is clear both from the definition of uncertainty that I give as well as from the fact that I
assume there always exist well-defined probabilities. Yet, the work on subjective probabilities
that was given a rigorous formal footing in the work of Kolmogorov, de Finetti and others
is usually associated to Knightian uncertainty. For the connection between such probabilities
and my approach here, see footnote 3 in section 5.2.
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random variable corresponding to some lottery l. Then we write l �N m if
there exists a random variable Y with E(Y|Xl) = 0 such that

Xm =
d

Xl + Y,

where “=
d

” means “has the same distribution as”. The second way says that
m should be considered riskier than l if every risk averse player prefers l to
m. Thus, formally, we write l �R m if, for every concave function u,

Eu(l) > Eu(m).

The third way says that m should be considered riskier than l if m has “more
weight in the tails” than l. To formalize this, Rothschild and Stiglitz use
the notion of a mean preserving spread (MPS). While cumbersome to discuss
formally, an MPS is simply any transformation of a lottery that preserves its
mean but spreads across outcomes. This spreading necessarily adds weight
to the tails of a distribution. Without making this formal, we write l �T m

if there exists an MPS that takes l to m. Rothschild and Stiglitz then showed
the following3:

Theorem 2 ( [RS70]) For all l,m 2 L, the following are equivalent:

1. l �N m

2. l �R m

3. l �T m

This theorem shows that all these three orderings coincide, giving very
strong support to the claim that this ordering adequately captures the notion
of riskiness. I will denote this ordering over lotteries as �RS.

It is fair to say, then, that we have a pretty good idea what we mean
when we say one lottery is riskier than another. Moreover, we can now also
see that this ordering underlies, or at least goes hand in hand with, the
notion of uncertainty in the risk premium approach to uncertainty costs that
I presented above. This is because,

l �RS m ) RP(l) 6 RP(m), (3)

or in other words, RP is an order-reversing function on �RS. Using yet more
words, it means that riskier lotteries according to the Rothschild-Stiglitz mea-
sure also produce higher risk premiums. To see why (3) is true, note that if
l �RS m, then by definition they share the same mean and by Thm. 2 every

3 The actual theorem was proven for continuous random variables, so this is really a special
case of the general theorem.
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risk averter prefers l to m. Combining this with (1) then yields the RHS of
(3).

I can now formulate my precise criticism of the risk premium approach to
uncertainty costs: �RS and �U do not coincide. In other words, there exist
pairs of lotteries where the one with less uncertainty has higher associated
risk premium. An example is given by

l = ((0.5, 0.5), (200,-200)), m = ((0.2, 0.8), (400,-100)). (4)

One can check that l �RS m while m �U l. By (3), this implies that RP(l) <
RP(m), which contradicts our requirement that f(m) 6 f(l) for any reason-
able measure of uncertainty cost. Thus, the risk premium cannot be a valid
measure of uncertainty cost.

2.3.2 Majorization connects risk and uncertainty

Before finally moving on to my own proposal, let me dwell a bit on the
relationship between riskiness and uncertainty. This is because, from the
above, it may seem as if riskiness and uncertainty are, ultimately, completely
unrelated. This is not so, and there is a very elegant way of showing this. To
do so, I will require the notion of majorization.

Definition 3 (Majorization) Let v,w be two elements of a n-dimensional vector
space V and denote as v

# the permutation of the vector v whose entries are ordered
non-increasingly, i.e. v#

1
> · · · > v

#
n, and similarly for w. We say that v majorizes

w, and write v �M w, if the following holds:

kX

i=1

v
#
i
>

kX

i=1

w
#
i
, k 2 {1, . . . ,n- 1}

nX

i=1

v
#
i
=

nX

i=1

w
#
i
.

The point of this subsection is to show that majorization underlies both
riskiness and uncertainty. While this may not be apparent from the defini-
tion, majorization naturally measures the spread of weight in a vector. It is
a pre-order on V and a partial order on the ordered subspace of V. It has
found numerous applications in fields such as graph theory or matrix analy-
sis [MOA11], but in fact has been “invented” in economics, where it was and
is most often used to measure disparity and income inequality (e.g. [Lor05;
Dal20; Atk70], see also [MOA11, Ch.13-F]).
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What does majorization have to do with riskiness? Let

l̃ = p �A = (p1a1,p2a2, . . . ,pnan)

be the vector of the entry-wise (Hadamard) product of p and A. Then we
have4

l �RS m , l̃ �M m̃. (5)

That is, the Rothschild-Stiglitz order of riskiness is nothing but majorization
in disguise! Indeed, all of the formal results of Rothschild and Stiglitz in
their [RS70] were at the time already known in the mathematics literature.5

Now, what does majorization have to do with uncertainty? This question
is answered by the following proposition, proven in [MOA11, Prop. 17.E.11].

Proposition 1 l �U m , p
(l) �M p

(m).

Thus, using majorization, we arrive at a conceptually and formally very
clean picture of what the relationship between riskiness and uncertainty is:
Riskiness is a majorization relation concerned with the spread of the whole
lottery (by (5)), while uncertainty is a majorization relation concerned only
with the spread of the probability distribution that forms part of the lottery (by
the above proposition).

But this also implies that we can use the same mathematical tools to study
these two notions. For instance, if there was a single function g : V ! R such
that g(v) 6 g(w) , v �M w, then g would be the only function that could
be used to quantify either riskiness or uncertainty. Unfortunately, there is no
such function. There are, however, many order-reversing functions on (�M

,�). Such functions are called Schur-concave and the above discussion implies
that every reasonable function of either riskiness or uncertainty should be
Schur-concave. Which of these many functions should one use to measure
uncertainty? In the next section, I will axiomatically pick out one Schur-
concave function, the Shannon entropy, as a natural candidate.

4 Technically, for (5) to be true we require a slightly more general definition of majorization:
The Rothschild-Stiglitz ordering did not make any assumption about the number of out-
comes, so �RS relates lotteries all over L. In contrast, �M, as I defined it, only relates vectors
in Ln. However, we could easily define majorization for vectors of different dimension by
padding the smaller lottery with zeros in both p and A and in this case (5) holds.

5 l �R m , l̃ �M m̃ was proven in [HLP29], l �N m , l̃ �M m̃ in [Str65] and l �T m ,
l̃ �M m̃ in [Mui03] and [HLP39].
In the literature, I have not come across any place where this connection between the work
of Rothschild and Stiglitz and the relevant mathematics literature is made explicit. For exam-
ple, already [Atk70] uses the connection without, however, referencing any of the relevant
mathematical literature.
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H O W T O M O D E L U N C E RTA I N T Y C O S T — A B E T T E R WAY

In this section, I argue that a function known as the Shannon entropy should
be used to quantify direct uncertainty costs.

3.1 axioms for uncertainty cost

At the beginning of the previous section, I have defined the notion of uncer-
tainty whose associated costs I want to quantify. I have argued that every
candidate uncertainty cost function f should reflect the corresponding “un-
certainty” ordering �U over lotteries (and that RP does not do that). My first
axiom says just this.

axiom 1 f should be order-reversing under �U.

Axiom 1 says that more uncertain lotteries in the sense of Definition 1 should
produce higher uncertainty cost — a reasonable requirement. By Proposi-
tion 1, this axiom implies that f should be a Schur-concave function of the
probability distribution p associated to a given lottery only. Why so? Assume
f was order-reversing and dependent on the outcomes A. Then there would
have to exist two lotteries l = (p,A) and m = (p,B) with A 6= B such that
f(l) < f(m). Now it is clear from the definition of an order-preserving or
order-reversing function f on some ordering � that, if l ⇠ m with respect
to this ordering, then also f(l) = f(m). But in the above example, clearly
l ⇠U m, so we require f(l) = f(m), which yields a contradiction.

Now that we know that f depends only on the probability distribution of
a lottery, we can ask what properties it should have. I propose the following
ones:

axiom 2 (continuity) f should be continuous.

The idea behind this axiom is that changing the probability distribution only
a little bit shouldn’t lead to abrupt changes in the uncertainty cost.

To state the next axiom, denote as 1n = (1/n, . . . , 1/n) the uniform proba-
bility vector in �n.

axiom 3 (maximality) f(p ⌘ 1n) should be an increasing function in n.

11
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This axiom reflects the fact that increasing the number of possible out-
comes with equal probability should also increase the cost due to uncer-
tainty.

The last axiom requires some setting up. Imagine a manager M with two
suppliers S1 and S2. The manager faces uncertainty with respect to both
these suppliers, however her uncertainty about them is correlated, meaning
that once she learns something about S1 she will in fact learn something
about S2. How should f model such a situation? Note first that it can be
represented in terms of nested lotteries. Let l1 denote the lottery that M faces
with respect to S1 and l2|ai

(with outcomes bj|i and respective probabilities

p
(l2|a

i
)

j
) be the lottery that M faces with respect to S2 once she has learned

that the outcome of l1 is ai. Of course, we can describe this situation as one
big “effective” lottery l with outcomes ai · bj|i and respective probabilities

p
(l1)
1

· p
(l2|a

i
)

j
. Now, a function f : L ! R I call additive with respect to nestings

if, for all such nested lotteries,

f(l) = f(l1) +
X

i

p
(l1)
i

f(l2|ai
). (6)

axiom 4 (nesting additivity) f should be additive with respect to nest-
ings.

While this axiom might seem at first glance somewhat ad hoc, I think that
it actually ensures that f behaves just like we would expect uncertainty cost
to behave when it comes to the combination of lotteries. For instance, if M
learns nothing new about S2 from learning about S1, this would imply that
l2|ai

⌘ l2 is the same for all outcomes ai. In this case (6) implies that the
total uncertainty cost should simply be the sum of the costs associated to
each of the two lotteries l1 and l2.

I take it that all four of the above axioms are reasonable requirements on a
function to adequately measure the cost of uncertainty. We can now use the
following classic result by Shannon:1

Theorem 4 ([Sha48]) Every f : � ! R that satisfies Axioms 2,3 and 4 has the
form

f(p) = cH(p),

where c is a positive constant and

H(p) = -
X

i

pi log(pi), (7)

1 There exist characterizations of the Shannon entropy using other axiom sets, with differing
degrees of intuitiveness [Csi08].
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is the Shannon entropy.

Using this result and including Axiom 1, we obtain the following corol-
lary:

Corollary 5 Every f : L ! R that satisfies Axioms 1 to 4 has the form

f(l) = cH(p(l)),

where c is a positive constant.

This result says that we should use a function called the Shannon entropy
to measure uncertainty cost. Why? Because it’s the only function that has the
properties that we want any reasonable measure of uncertainty costs to have.
But this might leave you with a bad aftertaste. Usually, we choose a function
to represent something because we have an intuition for what that function
does, and there is a conceptual link between what that function does and
what we want to represent. Here, in contrast, the Shannon entropy just fell
from the sky. But it is possible to give an alternative, conceptual motivation
for why the Shannon entropy is a good measure of direct uncertainty costs?
I will now present such a link.

3.2 what the shannon entropy measures

To understand, conceptually, how the Shannon entropy measures uncertainty
cost, it makes sense to understand what the Shannon entropy measures in
its original field of application, the theory of information.2 What is it taken
to measure there? If you look online, you will find many answers to this
question, describing it as a measure of surprise or information. Here is a
more precise statement about what it measures: Given a language with an
alphabet A that consists of n letters ai, let pi be the probability that the letter
ai appears at some point in a some text.3 Then H(p)N is the shortest aver-
age length of a bit string (a string of only zeros and ones) that is required
to encode messages of length N in that language so that a receiver could
decode that message with probability close to one. To make sense of this,
consider the following example: Let A = {a, c,g, t} be a language consisting
of four letters.4 This language produces beautiful, poetic words like “acgga”
or “ccccc”. Now, if I wanted to send you a message in that language encoded
in binary, I could choose the following encoding

2 In the following discussion, I assume that c = 1.
3 I assume this probability to be well-defined, for instance we could set pi to equal the relative

frequency of occurrence of ai in all texts of this language known to me.
4 Indeed, using the above alphabet, we could measure the Shannon entropy of the genome for

different kinds of species (recall the four nucleid acids). Fun fact: The Shannon entropy of
the genome of the bacterium Clostridium botulinum, the source of botox, is about 1.85 [Kas18].
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a ! 00 c ! 01

g ! 10 t ! 11,

in which every message of length N would have length 2N, since I use two
bits to represent every letter. In fact, if in the language all four letters ap-
pear on average with the same frequency, then it is intuitively clear that this
would also be the best encoding I could find. But what if the “a” and the “c”
appear almost never in that language, say with probability pa = pc = 2

-5

(maybe one of them denotes questions, and asking questions is frowned
upon down where they speak that language). Then the optimal encoding
would instead be

a ! 00000 c ! 11111

g ! 0 t ! 1.

Following this rule, the average length of binary messages that I send to you
will be much smaller than in the uniformly distributed case. For example, ev-
ery N-letter word containing only “g” and “t” can be encoded in a bit-string
of length N, so half as long as with the first encoding. And still, you could
decode my messages correctly with probability close to one (not exactly one,
because whenever a 00000 pops up, you have to guess whether I mean “a”
or “ggggg”). But this is exactly what the Shannon entropy tells us as well:
In the first case, where all four letters appear with the same probability, the
Shannon entropy is H((1/4, 1/4, 1/4, 1/4)) = 4(1/4 log(1/4)) = 2, while in
the second case H(⇡ 1/2,⇡ 1/2,⇡ 0,⇡ 0) ⇡ 2(1/2 log(1/2)) = 1.

Another way of seeing the above is the following. From (7), we can write
the Shannon entropy as

H(p) = E(X), (8)

where X is a random variable with distribution Prob(X = xi) = pi and that
takes values xi = -c logpi. Now since all pi lie between 0 and 1, smaller
pi produces a larger xi. This sounds like in the above examples, where rare
letters produced long messages. And indeed, xi is exactly the number of bits
that symbol ai “costs” in the optimal encoding (like in the above example,
where pa = 2

-5 resulted in an encoding that uses 5 bits)!
But why am I saying all of this? What does this have to do with economics?

The following: Zooming out, we learned that the Shannon entropy quanti-
fies the average cost, in some relevant resource (“bits”), of solving a given
task (“transmit message successfully in binary encoding”), under optimal
allocation of resources in light of the probabilities with which events (“what
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is the message”) in that task occur.5 Moreover, there might be other costs to
solving this task (for instance, one may have to pay the telephone provider
a monthly rent), but what the Shannon entropy quantifies is exactly the cost
that is due to one’s being uncertain, in the sense of Def. 1, about the event before-
hand. Further, it is clear that the Shannon entropy is only relevant for tasks in
which the optimal solution actually depends on which event occurred. Call
such tasks event-dependent. Now, I think that, whenever an economic prob-
lem can be understood as an event-dependent task, then an agent’s optimal
strategy to solving the task is very analogous to the optimal strategy in the
message-sending game above, in the sense that this agent will allocate re-
sources in such a way that she will require the least resources for the most
likely outcomes, etc. This analogy between the tasks, then, is exactly the con-
ceptual link between uncertainty cost and Shannon entropy that we sought
earlier.

3.3 the entropic uncertainty cost hypothesis

We have arrived at the idea that the Shannon entropy measures direct un-
certainty cost in two ways: Firstly, by introducing axioms that show that
the Shannon entropy is the only reasonable function to quantify the direct
uncertainty costs that appear in lotteries; Secondly, by showing an anal-
ogy between event-dependent economic tasks and the message-sending task
that gave a clear operational meaning to the Shannon entropy. Motivated by
these insights, and under the assumption that economic agents solve event-
dependent tasks under optimal allocation of resources, let me then formulate
the above idea as a hypothesis for future reference:

entropic uncertainty cost hypothesis (euch) The Shannon entropy
measures the direct uncertainty costs that accompany the solving of
event-dependent economic tasks.

Assuming EUCH is true, what I have to do to motivate the use of the
Shannon entropy in the context of a given economic problem is simply to
show that this problem can be understood as an event-dependent task. I will
do so in the applications below, but let me first compare this approach to the
insurance approach from the last section.

5 Note that this way of understanding the Shannon entropy does not rely on the previous
axioms at all. The connection between the two is simply that the optimal solution to the
message-sending task always leads to an encoding that satisfies the axioms!
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3.4 comparison with the insurance approach

At the end of the last section, where I discussed the insurance approach, I
raised a number of problems that I had with that approach. Let me briefly
explain why the current approach does not suffer from any of these prob-
lems: My first problem had to do with the fact that the insurance approach
used the Bernoulli utility function to encode the costs due to uncertainty
and that this was conceptually fishy because, for instance, it meant that risk
affine players could not have uncertainty costs. The above approach does not
suffer from this because the uncertainty cost is completely independent of
the utility function. My second problem was that I considered the insurance
approach insufficient because it applies only to the very small set of lotteries
in which people would actually use an insurance. I think that the above con-
siderations — the conceptual link between Shannon entropy and uncertainty
cost — makes it clear that my alternative proposal is an adequate, or at least
promising, way for modeling all those lotteries in which no insurance mecha-
nism is used. My final problem was that the insurance approach equivocates
uncertainty and risk. Well, I have excluded this possibility axiomatically in
Axiom 1.

Now, that we have gained some understanding and intuition for the en-
tropic approach, lets put it to use. This is what I will do in the remaining
two chapters of this thesis: First, I apply my model of uncertainty costs to
the “boundary of the firm”-problem from transaction cost economics. Then,
I will suggest an alternative to the EUH and show that this alternative natu-
rally solves at least three “paradoxes” that the EUH approach faces.
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A P P L I C AT I O N : B O U N D A RY O F T H E F I R M

In this section, I want to apply the model of uncertainty cost that I have
introduced in the previous section to the field of transaction cost economics.
In particular, I will address the “boundary of the firm”-problem that is one
of the questions in the field. I will argue that uncertainty cost affects the
agents’ decisions in this problem and present empirical evidence for this
prediction.

4.1 transaction costs and the structure of institutions

In 1937, Ronald Coase innocently asked “Why are there firms?”. In his fa-
mous article, Coase argued that the prevalent theory of free market economy
could not explain the existence of firms, because according to this theory all
commercial activity should go through the market. This is because the lat-
ter’s pareto-optimizing mechanism meant that whenever an entrepreneur
would be in need of hiring somebody for a job, her most rational choice
would be to find someone suitable on the labor market, contract them for the
job and once both parties completed their part of the deal, the two would
part and go their own ways. But as Coase rightly noticed, this is not what
happens. Instead, many entrepreneurs choose to establish firms, where peo-
ple get long-term contracts and offices, with Christmas parties, and so on.
Clearly, the prevalent theory was missing something. This something Coase
identified as the transaction costs that accompany the above process of finding
a suitable someone on the labor market.

Transaction costs can be many things, such as the costs of setting up a
contract (e.g. [Wil85]), the costs of obtaining information relevant to the em-
ployment process, the costs that arise from the existence of asymmetric in-
formation between parties (e.g. [Sch99]), or the costs that arise in the case of
unforeseen events that are either not regulated by the contract or are diffi-
cult to make legally binding in the case of court cases (e.g. [Har95]). The idea
then is that business-related activities can be carried out with significantly
less transaction costs within a company than in the free market. There are
many reasons for this difference in transaction costs. For instance, within a
company the entrepreneur has more control over the actions of his employ-
ees, the costs of drafting and signing contracts are smaller, and the risk of
unforeseen events is also smaller. Hence, taking into account the existence

17
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of transaction costs explains the existence of firms in a way that is compat-
ible with the theory of efficient markets, in that the entrepreneur’s overall
utility under a firm structure exceeds that of organizing all her work via the
market.

4.2 the boundary of the firm

Indeed, the above reasoning can be taken to not only explain the existence
of certain kinds of institutions in a market economy but also to explain their
particular structure.1 A classic problem in this regard concerns the boundary
of the firm, and has been succinctly stated by Williamson as the question
“[w]hat efficiency factors determine when a firm produces a good or service
to its own needs rather than outsource” [Wil10, p.215]. In other words, the
problem studies the question why sometimes firms expand their boundaries
(for example by incorporating part of their supply chain) and sometimes
they don’t.

There are several existing approaches that highlight different efficiency
factors in their models. An influential one that focuses on the notion of in-
complete contracts is due to [Har95]: The basic idea behind this “property
rights”-driven approach is that ownership over firms matters mainly because
in the case of events that have not, or could not have, been covered by the
contract between a firm and its supplier, it is the ownership structure that
determines which party will be able to win any ensuing disagreements. Of
course, such a scenario is not relevant if one assumes that contracts between
parties are complete, meaning that all possible events pertaining to the eco-
nomic relationship between the parties are covered by the contract between
them. Hence, a key achievement of this approach is to weaken this latter
assumption and explicitly model situation involving incomplete contracts.

Another approach was recently presented in [Alf+17]. Here, the central
efficiency factor that determines the decision of a firm to integrate one of
its suppliers is the ability of the firm to control the transition of the sup-
plier from a generic output product to relationship-specific output product
that maximizes the utility of the firm. See also [HR98; Sla06] and references
therein for other approaches.

4.3 uncertainty cost as efficiency factor

You know where this is going. In this section I will propose that uncertainty
cost should be added to the list of efficiency factors that affect the boundary

1 See also the work of Douglass C. North for attempts to apply essentially Coasian thinking to
much broader socio-economic patterns. E.g. [Nor90; Nor05].
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of a firm. The simple reason is that by taking ownership of another firm,
many sources of uncertainty about that firm are removed, for obvious rea-
sons. In particular, given a firm-supplier relationship, let l be a lottery that
the firm manager M faces towards the supplier S. For example, this could
concern the question whether S makes an effort to alter their production
process to produce a good that is tailor-made to your firm. Or it could con-
cern the question whether S is at the same time dealing with one of your
competitors.

I think that it is clear that the “boundary of the firm”-problem can be un-
derstood as an event-dependent task, with the manager’s task being “max-
imize the revenue of your company”. Specifically, M will have to react dif-
ferently to different outcomes of l. In particular, she will have to do dif-
ferent things in order to realize the payout of the lottery l! This is because the
assumption that A ✓ R was made mostly for mathematical convenience and
because it seemed reasonable that one could replace the outcome of some
cardinal-valued lottery (concerning, for example, the supplier’s type) with
the effective outcome for M (i. e. the achievable revenue given the supplier’s
type). But what this assumption wipes under the carpet is that different lot-
tery outcomes require different procedures for the actual lottery outcome to
be “transformed” into the effective, monetary value of the lottery (recall the
example from the introduction)! And it is this fact that makes the “boundary
of the firm”-problem an event-dependent task. Indeed, we can see the con-
nection to the message-sending task immediately, because a company will
probably prepare for the most likely supplier type and hence have an unusu-
ally high transformation cost in case the supplier turns out to be of a very
unlikely type, just like in that task.2 Once this is understood, we see that the
EUCH applies and the uncertainty cost for M should be measured by the
Shannon entropy.

Now, lets say that M has the opportunity to take ownership of S at the cost
, meaning that his lottery will be updated to l

0. Then the EUCH implies that,
since the direct costs of uncertainty are given by cH(p(l)), it makes sense for
M to make use of this opportunity as soon as H(p(l))-H(p(l 0)) > 

c
. This is

because in this case the reduced uncertainty costs outweigh the costs  of a
takeover.

Now, the above may sound a bit like a truism. But in fact it lets us pro-
duce a non-trivial empirical prediction: In the very simple reasoning above,

2 Well, you might say, but the costs of transformation could simply be included into the payout
of the lottery, by simply reducing the effective payout for outcomes that require cost-intensive
procedures. However, this counter-argument neglects the fact that the player could decide to
allocate resources in a way that is optimal given the probability distribution of the lottery. That
is, a player with finite resources for running through procedures might allocate resources in
such a way that the expected costs of realizing the gain from a lottery are minimized, just
like in the message-sending task.
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we can compare different hypothetical situations in which , c and the fi-
nal entropy H(p(l 0)) are fixed and the only thing that changes is the initial
entropy H(p(l)). In such a situation, the above reasoning implies that the
amount of mergers, or integrations of companies, that occur in a country
should positively correlates with the uncertainty about supplier’s perfor-
mance, as measured by the Shannon entropy. This is interesting because
it seems to yield a first empirical sanity check for the theme of this section,
namely that uncertainty costs co-determine the institutional structure in an
economy. And indeed we can use existing data from [Alf+17] to support the
correctness of this prediction! In that paper, the authors study a significantly
more complicated model for the boundary of the firm that is meant to ex-
plain both integration and delegation decisions of firms. Using data from
two very large databases, amongst others they estimate the following linear
probability model:

Integration
f,j,c,i = �0 + �1CVProductivity

i,c

+ �2MeanProductivity
i,c

+ �3Xf + �i + �f + ✏f,j,c,i

(9)

In this model, Integration
f,j,c,i is a dummy variable that takes the value 1 if

some firm f with primary activity in some business sector j (according to a
classification of the database) and located in country c integrates an input i
into their boundaries. CVProductivity

i,c denotes the coefficient of variation
(standard deviation/mean) of productivity of suppliers in input industry i

located in country c. The value of this variable is determined using the sales
per employee in thousands US Dollars as a proxy for supplier productiv-
ity. Further, MeanProductivity

i,c is the mean for the above proxy, Xf is a
vector of firm-level controls such as Employment, Age and Higher Educa-
tion, and finally, �i, �f denote input industry fixed effects (FE) and firm FE
respectively. In total, the regression involves 15 million firms located in 20
countries, restricting to industry-country (i, c) pairs with at least 50 indepen-
dent supplier in that industry and country. The results for the regression are
given in Fig. 1 below.

In this table, the columns denote different runs for the model with suc-
cessively stronger controls (for example, fixed effect controls are stated for
every kind of fixed effect in the lower part of the table). The upshot is that
the value for �1, which is stated in the first row, is found to be highly sig-
nificant and positive in every run. Moreover, the magnitude of the effect is
also found to be significant, in that the regression shows that a one-standard-
deviation increase in CVProductivity

i,c increases the probability to integrate
by 39 percent compared to the baseline probability of 1 percent. At the same
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Figure 1: Results for the regression model (9), reproduced from [Alf+17]: The esti-
mated coefficients are stated together with standard errors clustered at the
input level in parentheses. ⇤ ⇤ ⇤, ⇤⇤ and ⇤ indicate statistical significance at
the 1%, 5% and 10% levels respectively.

time, the mean productivity is found, again in all columns and again with
high significance, to be irrelevant for the question of integration.

Now, in what way do these findings produce support for my prediction,
that integration should positively correlate with the initial entropy H(p)

faced by a manager? To answer this, lets make the reasonable assumption
that the distribution of CVProductivity

i,c is Gaussian. Now, for a Gaussian
distributions p with mean µ and standard deviation �, we have that

H(p) / log(2⇡e�2),

so that, by monotonicity of the logarithm, if the probability of integration
positively correlates with the initial entropy, it should also positively corre-
late with the standard deviation, while the mean should be irrelevant (since
the entropy is independent of µ). But this is exactly what the findings for
CVProductivity

i,c and MeanProductivity
i,c say! Hence, the empirical data

are consistent with the prediction that the uncertainty costs are a relevant
efficiency factor that co-determine the boundary of the firm.

Of course, it would be interesting to repeat the above regression in such
a way that logarithmic dependence on CVProductivity

i,c is checked. This
could be a way to discriminate between the support for the model of [Alf+17]
(in which risk positively correlates with integration because it creates a larger
“option value” for delegation and not because of uncertainty costs) and the
ideas of this thesis. However, this lies beyond the scope of this essay.
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In Section 2, the insurance-based approach for the quantification of uncer-
tainty cost had, as its starting point, the EUH, a hypothesis about how play-
ers determine their preferences between lotteries. In this section, I want to
present an alternative model for preferences between lotteries that incorpo-
rates the Shannon entropy.

5.1 an alternative to the euh

Let u be a Bernoulli utility function of some player P that is faced with an
event-dependent task, so that EUCH applies. I do not make any assumptions
on the properties of u other than that it always leads to well-defined values
for Eu(l). The model that I propose is one in which a weak version of the
EUH holds in the sense that P would decide between lotteries based solely
on expected utility, if uncertainty costs were absent. But alas, they are not,
and so the utility of a given lottery is given by1

U(l) = Eu(l)- cH(p(l)). (10)

As we see, the idea is very simple: The utility of a lottery is its expected
utility less the uncertainty costs associated to the lottery. The value of c

depends on the setting and by empirically estimating it one can get an idea
about just how strongly uncertainty costs affect utility. I now propose the
following hypothesis:

euh with uncertainty cost (euhu) Given two lotteries l and m, a de-
cision maker will prefer that lottery with the larger value of U(l).

Denote by �H the ordering over lotteries that is induced by this utility
function, i.e. l �H m , U(l) > U(m).

Let me now to a discussion of the difference between EUH and EUHU: To
begin with, one may ask whether �H may not actually be modeled by EUH.
That is, maybe there exists another Bernoulli utility function u

0 such that
l �H m , Eu

0(l) > Eu
0(m). If this was the case, then EUHU wouldn’t actu-

ally add anything very interesting to the debate. Luckily (for me), the answer

1 This quantity is similar to the free energy in thermodynamics, which is defined as F(p) =
hEip - TH(p), where hEi is the average energy and T is the temperature of a heat bath mod-
eling the environment.

22



5.1 an alternative to the euh 23

to this question is negative. Intuitively, this follows from the fact that U(l) is a
non-linear function (since H(p) is non-linear), while Eu

0 will always be linear
and hence cannot reproduce the same ordering. Can we make this intuition
precise? Yes, we can and the answer lies in the von-Neumann-Morgenstern
utility theorem. To be able to state the theorem, we need two more properties
for orderings. Call an ordering continuous, if

l � k � m ) 9� 2 [0, 1] s.t. �l+ (1- �)m ⇠ k.

Call an ordering independent if

l � m ) �l+ (1- �)k � �m+ (1- �)k, 8 k 2 L, � 2 [0, 1].

Independence represents the idea that preferences are robust to being mixed
with alternatives. The theorem then states the following:

Theorem 6 ([NM53]) Let (�,L) denote an ordering. Then the following are equiv-
alent:

1. (�,L) is transitive, complete, continuous and independent,

2. There exists a u : R ! R such that

l � m , Eu(l) > Eu(m).

Now, it is easy to see that by definition �H is complete, transitive and
continuous. However it is not, in general independent! How can we see this? Let
me give two examples

Example 7 Consider three lotteries l,m,k 2 L2 with the same expected utility
Eu(l) = Eu(m) = Eu(k). Since all lotteries involve only two outcomes, we have
that

U(l) = Eu(l)-H2(p
(l)
1

),

where I set c = 1 and H2(p) = -p logp- (1-p) log(1-p) is the binary entropy
shown in Fig. 2. Now, under the above assumptions, l �H m , p

(l)
1

6 p
(m)
1

. To
violate independence, assume that p(l)

1
< p

(m)
1

6 0.5 < p
(k)
1

. These values imply
that l �H m and that there exists a value for � 2 (0, 1) such that

p̃l ⌘ �p
(l)
1

+ (1- �)p(k)
1

= 0.5

p̃m ⌘ �p
(m)
1

+ (1- �)p(k)
1

> 0.5

But this implies that H2(p̃l) > H2(p̃m) and hence m+(1-�)k �H �l+(1-�)k,
in violation of independence.
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Figure 2: The binary Shannon entropy

What was going here? Mathematically, we could produce this violation
only because of the non-linearity of H2(p) (specifically, the fact that H2(p)

has a maximum in the middle). But conceptually we also have a clear pic-
ture: Mixing with an alternative lottery (in this case k) has a different effect
on the uncertainty of the resulting lotteries. If, for example, l was a lottery
with no uncertainty (p(l) = (1, 0)) at all and m was maximally uncertain
p
(m) = (1/2, 1/2), then mixing with k would definitely lead to an increase in

uncertainty costs for l while it would also definitely reduce the uncertainty
costs for m. But this dependence is exactly what independence tries to rule
out, and so it makes total sense that �H violates independence.

All of this may sound overly abstract. The second example is slightly more
hands-on.

Example 8 Consider a manager M of a company that produces precious earrings
with production function ⇢(x) =

p
x and her metal supplier S. M has to place an

order in metal but she is unsure whether the metal that S supplies will be good or
bad. Now, in case the metal is good, M can sell the earrings at a price of 2$ per
gram, but in case they’re bad, she can only sell them for 1$ per gram. In both cases
she buys the metal for 0.5$ a gram. So her utility function is

u(a, x) = a
p
x- 0.5x

with a 2 {1, 2}. Let p be the probability that the metal is bad, so that l = ((1-

p,p),A = (2, 1)) is the lottery describing the situation. Plugging this into (10)
(and setting c = 0.5 yields)

U(l) = max
x2R+

⇥
p(
p
x- 0.5x) + (1- p)(2

p
x- 0.5x)

⇤
- 0.5H2(p)

= 2(1- p) +
p
2

2
- 0.5H2(p),



5.2 resolving paradoxes 25

0.2 0.4 0.6 0.8 1.0
p

1.0

1.5

2.0

U

Figure 3: U(l) with (blue) and without (red) uncertainty costs. The minimum at
p ⇡ 0.8 breaks the independence property.

where the fact that the maximization is over a single variable x reflects the fact that
the order has to be placed before the quality is revealed and in the second step I have
plugged in the solution to the simple optimization problem. In Fig. 3 I have plotted
U(l) as a function of p both with (blue) and without (red) the uncertainty cost term.
We see that without the uncertainty cost the function satisfies independence (because
of strict monotonicity) but adding uncertainty cost breaks this independence, by
introducing a minimum, just like in the previous example.

To summarize, EUH cannot model the predictions of EUHU and we un-
derstand very clearly why that is the case. Now, lets put EUHU to use and
solve some riddles.

5.2 resolving paradoxes

In this subsection I show that the preference ordering �H does not suffer
from Allais’ paradox, Rabin’s paradox or the Ellsberg paradox.

5.2.1 Allais’ paradox

Allais’ paradox [All53] is the standard example to illustrate the limits of
the EUH. In fact, it was designed by Maurice Allais to do just that. It goes
as follows: Consider the outcome set A = (5, 1, 0) and the following four
lotteries:

l1 = ((0, 1, 0),A) l2 = ((0.1, 0.89, 0.01),A)

l3 = ((0.1, 0, 0.9),A) l4 = ((0, 0.11, 0.89),A)

If you ask people for their preferences between the first two and second two
respectively, then most of them will prefer l1 over l2 and l3 over l4 (see, for
example, [Oli03] for an empirical study). But no linear preference criterion can
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reproduce this. And so EUH cannot do justice to those empirical findings.
What would EUHU say? If we set, for example, u(a) =

p
a and c = 0.2, then

(10) yields

U(l1) = 1 U(l2) ⇡ 0.95

U(l3) ⇡ 0.36 U(l4) ⇡ 0.26,

so that we indeed reproduce the empirically observed ordering. Upon reflec-
tion, it seems in fact as if uncertainty cost is exactly what Allais’ paradox
is about! What goes on in the paradox is that in the first pair of lotteries, a
significant amount of uncertainty is added to the lottery, so that the prospect
of making significantly more money in l2 is outweighed by the additional
uncertainty cost. In contrast, in the second pair of lotteries, the uncertainty
costs are very similar (since the distribution are almost the same) and so the
preference of the higher payout dominates the decision.

I should note that this interpretation of Allais’ paradox, as being con-
cerned with uncertainty, is different from the one that rank-dependent utility
theory, for example, produces [Qui93; TK92]. In such approaches, people’s
behavior is explained as an overweighting of unlikely and extreme (in terms
of payout) events. In the EUHU approach, just like in the above theories,
there is a high and non-linear cost associated to unlikely events (in the sense
that the value - logpi becomes large if pi is very small), but in contrast to
those theories this is independent of the payout.

5.2.2 Rabin’s Paradox

Next, turn to another setting that EUH fails in — Rabin’s Paradox [Rab00].
The message of this paradox is that in EUH, slight risk aversion about lot-
teries with relatively small payouts can be made to imply very high risk
aversion about lotteries with relatively large payouts. Consider, for example,
a player P with a Bernoulli utility function u which is such that, for every
amount w 2 R,

1

2
u(w- 10) +

1

2
u(w+ 11) < u(w). (11)

Clearly, P is risk averse, because for monotonically increasing u, the above
implies that u is concave. And so if P follows the EUH, then given the choice,
he would, for any amount w, prefer the lottery l = ((1, 0), (w, 0)) to the lot-
tery m = ((1/2, 1/2), (w+ 10,w- 10)). Now, surely P’s risk aversion has a
limit. To find this limit, we can ask: What is the least amount v 2 R such
that P would prefer the lottery k = ((1/2, 1/2), (w+ v,w- 100)) to the lottery
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l. Rabin’s paradox then is this: If the EUH is true, then given (11), there is
no amount v such that P would prefer k to l. But this seems silly, because
nobody could be that risk averse. Indeed, the attack against the EUH that
lies behind this paradox is related to one of my criticisms against the in-
surance approach from Section 2, namely that the utility function u is, in a
sense, abused if it is made to model all aspects of risk aversion (including
uncertainty) alone.

How does EUHU deal with the situation? It does very easily. First, we
want to produce a situation in which P has a utility function u such that, for
any amount w,

l �H m. (12)

This is simple, just choose u(a) = a and c = 1, so that U(l) = w and
U(m) = w- 1

2
, since H(1/2, 1/2) = 1 and (12) follows. At the same time, for

any v > 102 we have that k �H l and nothing paradoxical is in view.

5.2.3 Ellsberg Paradox

Since we seem to be on a streak, let me consider one more paradox for
the EUH — the so-called Ellsberg Paradox [Ell61]. It considers a setting in
which a player is not only uncertain about the outcome of a lottery, but in
fact uncertain about the distribution itself. It is generally taken to show that
people exhibit an aversion against ambiguity and that the EUH does not
reflect this aversion [GS89]. So how does it go? Consider an urn with 90

balls, 30 of which are red and the remaining 60 of which are either yellow or
black. As in Allais’ paradox, you are invited to choose your favorite among
the following two pairs of lotteries.

lA lB

If you draw a red ball, you
get 100$.

If you draw a black ball, you
get 100$.

lC lD

If you draw a red or yellow
ball, you get 100$.

If you draw a black or yellow
ball, you get 100$.

If you are like most people, you will prefer lA over lB and lD over lC. The
common explanation for this is that in both pairs of lotteries, the expected
return is the same but in lA and lD, you know exactly what your odds of
winning are, while in lB and lC, your odds depend on the actual distribution
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of black and yellow balls. EUH cannot reflect this fact and it says that you
should either prefer lA and lC, or lB and lD.

Does EUHU deal with this paradox? It does, and as with the other two
cases it does so very naturally I think. The key insight required is that the
Shannon entropy decreases over coarse-graining. By this I mean the follow-
ing: Let p = (p1, . . . ,pn) be some probability vector. Now, take any partition
of the set {1, . . . ,n} into m subsets Ii and define the vector

p̃ = (
X

j2I1

pj,
X

j2I2

pj, . . . ,
X

j2Im

pj)

This is a valid m-dimensional probability vector that is obtained from turn-
ing several entries of p into a single one of p̃. For this reason, any p̃ con-
structed in this way is called a coarse-graining of p. Now, the Shannon en-
tropy is such that, for any p, H(p̃) < H(p) for any non-trivial coarse-graining
of p (this follows from the concavity of the logarithm). This makes sense
for a measure of uncertainty, since surely one is less uncertain about the
outcome of a coarse-grained distribution than one is about the original dis-
tribution. Now, how does this help with Ellsberg paradox? Since I don’t
want to get caught up in details, in Appendix A I show that, for the utility
function u(a) = a, the above lotteries are such that Eu(lA) = Eu(lB) and
Eu(lC) = Eu(lD), while p

(lA) is a coarse-graining of p
(lB) and p

(lD) is a
coarse-graining of p

(lC). Plugging this into (10) then implies that, for any
c > 0, lA �H lB and lD �H lC, as required.2

5.3 uncertainty cost as psychological cost

At this point, you may think: Well, this is all nice, but what really is the
connection between the Shannon entropy and the uncertainty cost in these
paradoxes? Recall that I assumed at the beginning of this section that P faces
an event-dependent task, so that EUCH applies. So your question really is:
What are the event-dependent tasks in the above paradoxes and how strong
is the analogy between them and the message-sending task from Sec. 3.2? My
answer is that the task in all three cases is simply “Make the best decision”

2 Underlying this approach is a reductionist strategy that introduces a Second Order Probability
(SPO) distribution over possible distributions of the yellow and black balls [CW92]. As will
be clear to the reader of Appendix A, I make the assumption that this SPO is uniform and a
critic might argue that this is an unwarranted recourse to Laplace’s Principle of Indifference
and that without motivating it I have to enter an infinite regress invoking higher order dis-
tributions. However, to this I can reply that the monotonicity of the Shannon entropy with
respect to coarse-graining holds independently of this assumption and that every SPO (with
and without the same expectation value) will allow me to solve the Ellsberg paradox. Hence,
I do not need to enter an infinite regress and my assumption of uniformity was merely for
convenience.
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and that the analogy holds perfectly fine if one identifies “cognitive effort”
or “psychological stress” as the relevant resource. If your task is to make the
best decision then in solving this task you have to consider and weigh all
possible events. In such situations unlikely events are particularly “costly”
for a number of reasons, which include, but are not limited to, having to
calculate with small, unintuitive numbers, or having to keep an event in
mind despite it probably never happening anyway. All of these are costs
associated to making the best decision, and indeed we can interpret the
values xi = - logpi of the random variable X in (8) as the psychological cost
of being uncertain about an event that occurs with probability pi. 3

3 In this thesis, I have not discussed where the probability distributions come from. But this
is an important and subtle question: They might be “objective” or “frequentist” and repre-
sent, for example, the relative frequencies of lottery outcomes in past rounds; Or they might
be “subjective” or “classical” and represent a player’s limited knowledge of some hidden
information [Köh17]. This distinction is implortant because it affects the meaningfulness and
economic soundness of any approach attempting to quantify uncertainty cost. For example,
the motivation for the Shannon entropy I presented in section 3.2 implicitly assumed the prob-
abilities were of the first, frequentist type. In contrast, the “psychological stress”-motivation I
present in this section goes naturally with a subjective probability. While I maintain that this
motivation is meaningful, since lotteries can meaningfully be thought with subjective prob-
ability vectors, I should note here that there is a well-developed account of decision theory
for subjective probabilities, including a subjective expected utility hypothesis (SEUH), that
is based on the notion of acts rather than lotteries [Sav54; CW92]. It would be interesting to
apply my arguments to this approach, and compare its non-linear approach with so-called
probabilistic sophistication approaches to generalizing (SEUH) [MS90; KQ92]. However, I can-
not do so here because of the limited scope of the thesis.
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summary

Let me summarize: In this thesis, I have developed a conceptual and formal
account for direct uncertainty costs, which are costs that arise for economic
agents from the very state of being uncertain. I have first argued that a naive
micro-economic approach for quantifying such costs suffers from a number
of problems. In discussing those problems I have also shown that there is a
very simple way to understand how, both conceptually and formally, the no-
tions of risk and uncertainty are related. I have then introduced axioms that
single out the Shannon entropy as a suitable measure of uncertainty costs
and also presented reasons to understand that what the Shannon entropy
exactly measures are the minimal costs due to an agent having to react dif-
ferently to different outcomes in an economic problem they face. I have then
applied these results to two different economic fields: First, I have applied
them to the field of transaction cost economics, and argued, both theoret-
ically and by giving empirical support, that uncertainty cost is a quantity
that co-determines the decision of a firm whether to integrate part of its sup-
ply chain or not. Finally, I have applied my results to the field of decision
theory, where I used them to present EUHU, an alternative to the expected
utility hypothesis, and shown that EUHU naturally solves Allais’, Rabin’s
and the Ellsberg Paradox.

outlook

What are reasonable next steps for the future? At a formal level, I believe
that the study of more general entropic quantities than the Shannon en-
tropy in both decision theory and transaction cost economics could be of
great interest. For instance, an entropic function that could be used to quan-
tify the psychological stress in decision theoretic settings alternatively to
the Shannon entropy is the so-called Berg entropy which is simply given as
HB(p) = -

P
i

logpi and hence corresponds to the total stress, in the above
sense, induced by a lottery, as opposed to the average stress as measured by
the Shannon entropy. The same applies to the connection between riskiness,
uncertainty and majorization. The latter is very well studied mathematically

30
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and it seems almost certain that many interesting results for economics could
follow by checking those results.

At a conceptual level, I believe that the results of this thesis could be
applicable to not only build models of inter-company relationships but also
intra-company structure. That is, in a vein similar to the program of [Gar00],
the internal organization of companies could be understood as an attempt
to minimize the internal uncertainty costs.

At an empirical level, it would be interesting to use the datasets from
[Alf+17] to test more rigorously my claim that the Shannon entropy posi-
tively correlates with integration decisions of companies.
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A
C O A R S E - G R A I N I N G S O F L O T T E R I E S

In this appendix, I give the details for how the EUHU deals with the Ellsberg
paradox. I will consider only the first pair in detail, since the situation with
the second pair is exactly analogous. Consider again the first pair

lA lB

If you draw a red ball, you
get 100$.

If you draw a black ball, you
get 100$.

We can straightforwardly write lA = ((1/3, 2/3), (100, 0)). But what are the
distribution p ⌘ p

(lB) and outcome set A ⌘ A
(lB) corresponding to lottery

lB? To tackle this question, note that there are 60 possible distributions of
black and yellow balls in the paradox. In the first, there are no black balls
and 60 yellow balls, in the second there is one black ball and 59 yellow balls,
and so on. Now, for each of these distributions, there are two events, one in
which one wins 100$ (that is, if the ball is black) and one in which one wins
nothing (if the ball is not black). Hence, there are in total 120 events distinct
events. Now, the probability of the event “m black balls and win” is m

60·90 ,
since with probability 1

60
there are m black balls and given that there are m

black balls, the chance of drawing one of them is m

90
. By the same reasoning,

the probability of the event “m black balls and lose” is 90-m

60·90 . In total, this
yields

lB = (p =
1

60 · 90(0, 1, . . . , 60| {z }
win-events

, 90, 89, . . . , 30| {z }
lose-events

),

A = (100, 100, . . . , 100| {z }
60 times

, 0, . . . , 0| {z }
60 times

)).

Now, using
P

n

i=1
i = (n+1)n

2
and u(a) = a, we can first calculate

Eu(lB) =
60X

m=1

100

60 · 90m =
61 · 100
90 · 2 ⇡ 100

3
,

35
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which coincides with Eu(lA). Moreover, lets coarse-grain p by collecting all
the win-events into one entry and the lose-events into a second one. This
results in a distribution

p̃ =
1

60 · 90(
60X

m=1

m,
60X

m=1

(90-m)) ⇡ (1/3, 2/3),

which shows that p(lA) is a coarse-graining of p(lB) as claimed.
By exactly the same reasoning we also arrive at the fact that p

(lD) is a
coarse-graining of p(lC).
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