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Abstract. It is desirable, if not crucial, for a philosophical position on the interpretation of

general relativity (GR) that commits to the existence of spacetime points to be able to both (1)

individuate these points for any model of GR and (2) evade the hole argument of Earman and

Norton (1987). Moderate structural realism is a position that makes this commitment. Here,

following an introduction of structural realism (Sec.1), I first discuss an argument of Wüthrich

(2009) aiming to show that moderate structural realism is incapable of satisfying (1) (Sec.2).

I argue that it can be rebutted along the lines presented by Müller (2011) (Sec.3). Then I

consider whether the form of moderate structural realism that is required for this rebuttal to

work can also manage to satisfy (2), arguing that it can (Sec.4).

1. Introduction

Structural realism (SR), in the philosophy of science, is the position that the claims scientific

theories “make about the ’structure’ of physical reality are true.” (Greaves, 2011, 199). It has

been suggested as a ’third way’ in the debate between scientific realism and anti-realism, a kind

of dialectic synthesis of theirs that evades both the “no-miracle”-argument and the implications

of pessimistic meta-induction (Worrall, 1989). Within the ontic type - claiming unlike the

epistemic type not that structure is all we can have justified belief in but that structure is all

there is - four forms of SR are distinguished: Represent a structure1 set-theoretically as a duple

S ≡ 〈B,R〉, with a “basis” B and their relations R.2 Then timid, traditional and moderate

SR assume that S is all there is, in the sense that any world can be fully characterised by

giving its structure (possibly non-uniquely), however they assign ontological primacy to B,R

and to none of them, respectively. To a fourth, radical type, relations are all there is, i.e.

1Hoping to avoid unnecessary confusion, I will use the following terminology: At the trans-world-level: “Struc-
tures”, as defined above, represent “worlds”. “Models”(of GR) are isomorphic to structures and therefore also
represent worlds. Many structures/models can represent the same world. At the intra-world-level: Elements of
the basis of a structure represent elements of the ontology of the world corresponding to that structure. In the
case of GR, manifold points are elements of the basis and spacetime points elements of the ontology.
2Define the set Rn of n-place relations Rn in the standard way as Rn ⊆ P(Bn) where P is the power set and

Bn is the Nth cartesian power of B. For a structure with |B| = N , define R :=
⋃N

n=1 Rn. The fact that cases
with n = ∞ are problematic, such as for example the manifolds considered here, is ignored (together with the
other authors).
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S ≡ R.3 Moderate structural realism (mSR) is characterised by asserting that there are no

intrinsic properties. These are “all and only those qualitative properties whose exemplification

is independent of the existence or nonexistence of other contingent objects” Wüthrich (2009,

1041).

In the case of spacetime theories, it has been argued that this exclusion of intrinsic properties

allows moderate spacetime structural realism (mSSR) to treat spacetime points ontologically in

a way that is weak enough to evade the hole argument of Earman and Norton (1987) but strong

enough to not collapse into relationalism (Esfeld and Lam, 2008; Stachel, 2002). However, there

are no free lunches, and the question is what price mSSR has to pay for this ability. In the

next two sections, I discuss the claim Wüthrich (2009) that the commitment to the existence

of spacetime points in mSSR is so weak that there are models of GR for which mSSR is forced

into believing that the ontology of these models consists of only a single point at any time. In

the last section, I consider whether an mSSR that evades this embarrassment can still solve the

hole argument.

2. Too weak to individuate?

In this sections I present Müller’s argument by first considering the question of individuation

in SR (2.1) and then the argument that builds on it (2.2).

2.1. Structural individuation. The elements of the ontology of a theory are usually individ-

uated4 using a discernability criterion, for example some version of the Principle of the Identity

of Indiscernibles (PII).5 In the case of structural realism about spacetime, in which the basis B

is given by the manifold M, a property-based6 PII says that, for a given structure S and any

p, q ∈M,

(1) AbsInd(p, q,S)⇒ p = q,

where AbsInd(p, q,S) is a function capturing absolute indiscernibility and is defined as

(2) AbsInd(p, q,S)⇔ (∀P ∈ PropS : p ∈ P ↔ q ∈ P ) ,

3The distinction between ontic and epistemic SR goes back to Ladyman (1998). Th one between timid, traditional
and radical SR is introduced by Stachel (2006), while the moderate version is ascribed to Esfeld and Lam (2008).
4I am concerned here only with relations of identity and non-identity, using the term “individuate” as synonymous
with“infer a relation of non-identity between”.
5The PII itself is contentious. See (Saunders, 2003) for some motivations.
6A property is just a unary relation, i.e. the set of all properties for a given structures is just R1.
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where PropS is some set of “discerning properties”. Which properties are elements of this

set depends of course on the particular philosophical position. In the case of any structural

realism, this can include only qualitative properties, that is “all and only those properties whose

exemplification does not depend upon the existence of any particular individual” (Wüthrich,

2009, 1041). This excludes, for example, haecceity - a metaphysical property that lets one

individuate a point just by virtue of it being this particular point - since this is a non-qualitative

property. For the moderate version of SR, with its exclusion of intrinsic properties, it must be

relational properties, i.e. unary properties of points defined in terms of non-unary relations,

for example of the form “p ∈ R ∈ (R1) ⇔ ∀q : 〈p, q〉 ∈ R′(∈ R2)”. In fact, these relational

properties are exactly those unary properties invariant under actions of the automorphism

group Aut(S) of S, whose elements ψ map S onto itself, leaving R invariant. In fact, given

the set-theoretic formulation of this essay, each such automorphism is isomorphic to a map

ψ : B → B with the corresponding group being a subgroup of the permutation group Π(B)

over the elements of the basis. In fact, using this map we can represent the action of these

automorphisms on subset of B and, therefore, any objects of a structure. Define then, for a

given structure, Reln ⊆ Rn as the set of relations that are invariant under such automorphisms

of the structure, it then follows that, according to Wüthrice, mSSR is be characterised by

(3) PropS ⊆ Rel1,

where we allow for the possibility that not all relational properties can be used to discern.

2.2. Setting the challenge. Wüthrich (2009) sets a challenge for mSSR. It bases on the idea

that isometries of the metric undermine the latter’s individuating capacity and thereby force a

follower of mSSR with embarrassingly little means to distinguish between spacetime points.

First take a model of general relativity to be defined by the tuple7

(4) S := 〈M, g,X〉,

where M is a differentiable manifold, g is the second rank metric tensor and X represents

other structures required to fully specify a solution of GR, such as, for example the stress-

energy tensor, the connection and the topology. To each of these models corresponds a unique

7I omit any mention of connections etc. here in that they are not required for this discussion and are at
least formally derivable from the metric (together with compatibility assumptions). This is not intended as a
presupposed stance on the ontology of GR.
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structure S = 〈B ≡ M,R ≡ R(S)〉, in which the basis is given by the manifold8 and the

relations are determined by the model. To be moderate structural realist about GR, as I mean

it, is to be moderate structural realist about all the structures corresponding to all the models

of GR.

Importantly, this includes those that satisfy the cosmological principle (CP). This principle

states that there are no special direction or points in space. This implies that exact spatial

homogeneity and isotropy must be global isometries of the metric (invariance under spatial

translations and rotations respectively) for any model consistent with the CP. Now, by the

Robertson-Walker theorem any such a model will be a FLRW-spacetime (Robertson, 1935).

This spacetime, characterised by a FLRW-metric with the above isometries, determines a unique

foliation of the manifold M, i.e. its partition into disjoint spacelike hypersurfaces Σt, that

preserves the spatial symmetries and for which t ∈ R can be interpreted as a global “cosmic”

time. Call this foliation of M into the Σt’s Cos(S).

Next, it is easy to see that, by construction, every Σt in this spacetime is invariant under all

automorphisms ψt : Σt → Σt. In fact, it can be shown that

(5) Rel1 ⊆ Cos(S), .

(5) does not follow automatically by the automorphism invariance of the foliation, since the

elements of Rel1 are invariant under automorphisms of the whole structure. But this also

includes the other elements X as well. Therefore, the maps ψt could, in principle, be such that

ψt(X) 6= X - in the end, the Robertson-Walker result is a geometric result that is independent

of the Einstein equation. That (5) is nevertheless true follows by the fact that, CP is imposed

as a global constraint even with or without Einstein equations: X must, by this principle, be

such that the FRLW-metric is a solution to the Einstein equations at all times - a requirement

expressed in the Friedmann equation - and this means that the at’s are automorphisms of the

whole structure, i.e. that (5) holds.

But these results imply, for Wüthrich, an “abysmal embarrassment” for mSSR:

Take any point p ∈M. By (5), any element of Rel1 that p is a member of is also an element

of Cos(M). But because Cos(M) is a partition of M, this implies that p is a member of only

one element Σt ∈ Rel1 for some t. But by (3), the PII (1) implies that p is identified with

8In general, of course, other elements of a model may be taken to form the basis. In this essay, I consider only
positions that make the above assignment.
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any other point in Σt. Thus, the ontology of mSSR in the case of spacetimes obeying the CP

consists of a single point at any given time!

3. Meeting the challenge

In this section I discuss a solution to the Wüthrich’s argument proposed by Müller (2011). I

do so by first introducing it (3.1) and then discussing its feasibility (3.2).

3.1. Müller’s reply. What reply can the moderate structural realist offer to the “embarrass-

ing” conclusion of the last section? If she (a) does not want to convert to any other form of

structural realism and further continues to (b) make a form of the PII the basis of individuating

the elements of her ontology as well as (c) consider her ontology to consist of spacetime points

rather than, for example, fields, then, Wüthrich (2009, Sec.4) argues, she can only either reject

the physical relevance of FLRW- and similarly symmetric spacetimes or consider stronger forms

of the PII. The former possibility Wüthrich considers not to be very attractive. This is because

even though highly symmetric spacetimes are likely of measure zero, their actual obtaining can-

not, at the moment, be excluded. To this one can add that most moderate structural realists

will probably share the intuition that homogeneous and isotropic spacetimes consist of many

more than a single spacetime point and that following the first option would simply beg the

question. Thus, for a moderate structural realist of the above beliefs a strengthening of the PII

seems the most reasonable route.

Müller (2011) provides a counter to Wüthrich’s challenge along exactly those lines: Wüthrich’s

characterisation of mSSR neglects, the counter goes, the fact that the moderate structural real-

ist accepts genuine n-ary relations between spacetime points. But there exists a simple binary

relation, the causal relation manifested in the light-cone, by means of which all manifold points

can be “weakly” discerned. Hence, a characterisation that takes into account mSR’s sensitivity

to such relations evades the embarrassing consequences of the last section. In more detail, it

proceeds as follows:

Müller’s begins by arguing that properties of manifold points are not the only means that

mSSR has to discern them. Just like he is able to discern points via automorphic properties, he

is able to discern them using binary automorphic relations. Even though Müller himself does

not require it for his own argument to succeed, this can, of course, be generalised to an inclusion

for general n-ary automorphic relations, something that will prove useful in the last section.
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A PII involving such general relations then reads, for a given structure S for which |B| = N ,

(6) ∀p, q ∈M :

N∧
n=1

RelIndn(p, q,S,Dn)⇒ p = q,

where the function RelIndn(p, q,S,Dn), relational indiscernability, obtains iff

∀R ∈ Dn : 〈o, a1, . . . , an−1〉 ∈ R↔ 〈o, a1, . . . , an−1〉 ∈ R

∧〈a1, o, . . . , an−1〉 ∈ R↔ 〈a1, o, . . . , an−1〉 ∈ R

...

∧〈a1, . . . , an−1, o〉 ∈ R↔ 〈a1, . . . , an−1, o〉 ∈ R.

(7)

Here, Dn are the n-ary relations that can be used to discern. This function then says that

two elements of a basis are relationally indiscernible iff there exists no n-ary discerning re-

lation of which they are not both members in the same place. Clearly, RelInd1(p, q,S,D) =

AbsInd(p, q,S,D) For the moderate structural realist who can discern by means of automorphic

relations Reln for the same reason as discussed for relational properties,

(8) Dn ⊆ Reln, ∀n ∈ {1, . . . , N},

From (8) and (6) then follows that if there exists an n-ary automorphic relation for the FLRW-

spacetime with n ≤ N then points differing with respect to this relation are discernible. Müller

takes the light-cone structure to be exactly such a relation: For any model of GR, let LC(p) be

the light cone of point p ∈M. Then define the following relation L(p, q) ∈ R2

L(p, q)⇔

(∃r ∈M : r ∈ LC(p)\LC(q))∨(∃t ∈M : t ∈ LC(q)\LC(p)),
(9)

i.e. L(p, q) obtains iff the light cones of p and q differ in at least one point. Müller then argues

that ¬L(p, q) provides an identity criterion, since by definition

(10) ¬L(p, q)⇔ ∀r ∈M(r ∈ LC(p)↔ r ∈ LC(q))⇔ p = q,

Not only does this mean that L(p, q) weakly discerns any two different points p and q, (10) can

also be used to to show that L(p, q) is automorphic, i.e. L(p, q) ∈ Rel2. This is because for
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L(p, q) to be automorphic is that

(11) L(p, q)⇔ L(ψ(p), ψ(q)).

But this follows by (10) together with the fact that the automorphisms ψ are bijective in that

(12) L(p, q)⇔ p 6= q ⇔ ψ(p) 6= ψ(q)⇔ L(ψ(p), ψ(q)).

Thus, Müller concludes, since it was shown that there exist automorphic relations in any general

relativistic spacetime model by means of which all spacetime points can be weakly discerned,

including all the points in the hypersurfaces Σt’s of FLRW-spacetimes, a fully characterised

mSSR evades the embarrassing consequences of Wüthrich’s argument.9

3.2. Is Müller’s reply feasible? To assess Müller’s reply it is important to emphasise that it is

the irreflexivity of L(p, q) that discerns the manifold points. A binary relation R is irreflexive iff

R(x, x) is false for all x in the relation’s domain. That is, the reason that points are relationally

discernible by it, leaving (7) with n = 2 to evaluate as false, is that L(p, q) ↔ L(p, p) is false

whenever p 6= q. This form of discernibility is called weak discernibility (Saunders, 2003, 293).10

The two main worries with Müller’s reply I therefore take to be the following:

(1) Is the use of non-unary relations in mSSR feasible?

(2) Is the use of irreflexive relations in mSSR feasible?

3.2.1. Feasibility of non-unary relations. Wüthrich (2012, p.234) considers the use of discerning

relations to be unfeasible in that it involves a question-begging assumption of numerical plurality

of points:

“[t]here is the general worry with [Müller’s] resolution, of course, that the as-

sumption of there being an irreflexive relation exemplified in the physical struc-

ture at stake means, eo ipso, that there are two numerically distinct objects

exemplifying the relation. If the point of this resolution was that numerical

plurality was to be derived, rather than stipulated, then it seems to fail.”

Müller (2011, 1057) thinks this worry is ungrounded:

9Since L(p, q) is closely linked to conformal structure, it would be interesting to see whether Müller’s account
can be re-challenged for the case of conformally symmetric structures.
10Weak discernibility is to be contrasted with another, stronger form of relational discernability, relative discerni-
bility, for which binary relations obtain in only one order, in which case at least one of the conjuncts of (7) has
to be false (ibid.).
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“The aim is not [. . . ] to find out whether there really is more than one space-

time point - for that would, indeed, be circular - but the aim is to find out

whether the distinctness of the points can be grounded qualitatively, physically,

and structurally, and that has not been assumed tacitly.”

What I take Müller to be saying here is that what needs to be shown is that the moderate

structural realist has the means of distinguishing between the different points of a general

relativistic spacetime no matter how many of them there are. This is because it was an asserted

inability to distinguish, not an asserted number of points in the universe, on grounds of which

the problem arose in the first place. A clear way of seeing this is by clearly distinguishing

elements of a basis from those of the ontology: There is nothing question-begging in using bases

B with any number of points; if they turn to out to all correspond to a single element of the

ontology, the PII will tell.

I think that such a reading of Müller answers Wüthrich’s worry, however I believe that the

former’s argument does not actually reflect this agenda. This is because he infers the identity

criterion (10) of spacetime points in general relativistic spacetimes from the definition of L(p, q).

But this is not actually in line with how mSSR goes about reasoning about identity. Instead

it is in the PII that such a criterion needs to be grounded. Still, Müller’s conclusion can be

reached with only two more weak assumptions, as I will show now: The aim is to prove that

(13) ¬L(p, q)⇔ p = q,

where we need both directions of this equivalence in order to prove the automorphic invariance

of L(p,q) in (12). Now make the following assumption:

∀p, q ∈M :((∃N ≤ n, n 6= 2 : ¬RelIndN (p, q,M,D))

∨ (¬RelInd2(p, q,M,D2\L(p, q))))

⇒ L(p, q)

(14)

This says that if there exists a relationally discerning relation for a model that is not L(p, q)

such that it obtains for two points p, q ∈ M, then L(p, q) obtains for these points as well.

This assumption is needed because a modus tollens on the PII implies only that there exists

some relation under which the two points are discernible, not which one. Then the righthand

implication follows for absolutely indiscernible manifolds by (14) together with the PII, (6). The

lefthand implication follows by (14) together with the Principle of the (absolute and relative)
8



Indiscernibility of Identicals, i.e.

(15) ∀p, q ∈M,Dn,S : p = q ⇒
N∧

n=1

RelIndn(p, q,S,Dn)

The latter assumption is very weak, indeed Müller considers it a theorem of logic (ibid., 1054).

The former is considerably stronger but if one is sure that there is some relation other than

L(p, q) that discerns two points, then Müller’s argument is redundant anyway. By proving in

this way, the rest of Müller’s argument then goes through and also does justice to Wüthrich’s

counter.11

3.2.2. Feasibility of irreflexive relations. An independent question is whether, granting the fea-

sibility of using non-unary relations, the weak discernibility provided by irreflexive properties

is admissible in the case of Wüthrich’s argument. (Saunders, 2003) defends the applicability

of such relations in physics in general, discussing examples such as the sermonic single state.

But given that Wüthrich (2009, 1045) uses an irreflexive distance measure to weakly discern to

Black’s notorious spheres, at least he himself cannot think the notion itself problematic. Any

problem he might have with the notion beyond its binarity must therefore be grounded in the

particular case of mSSR or even the FLRW-models.

One hint in this direction may be read off a footnote that directly follows the above quote of

Wüthrich:

“To claim that weak discernibility may be used to introduce an identity relation

to a language without identity amounts to an insistence that the pertinent rela-

tion is primitively irreflexive. Thus [. . . ] such a claim is tantamount to accepting

non-structural facts...” (Wüthrich, 2012, footnote 29, orig. emphasis)

There are two ways in which, I think, Wüthrice may be read here: Either Wüthrich takes

the assignment of irreflexivity to L(p, q) as primitively irreflexive to be the only alternative to

establishing this irreflexivity on the basis of assuming the numerical plurality of points in the

universe. In this case the argument of the last section applies and we need not worry about such

an alternative because the original account, to which it was meant to provide an alternative,

is not anymore subject to the problem. Or he takes the the irreflexivity of L(p, q) to simply

be primitive and therefore non-structurally grounded. If this was true, then the irreflexivity

of L(p, q) would disqualify it for mSSR. But of course it is not: The irreflexivity of L(p, q)

11It may be that the alternative argument I sketch below is made tacitly by Müller. However, no mention is
made of the PII or any of the other assumptions by him and the fact that he presents this part of the argument
as a formal proof suggests that he wouldn’t have omitted these details in this case.
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follows by (9) set-theoretically as a tautology and is completely determined by the metric, and

thus structurally grounded. Thus, it seems that Wüthrich’s only point of concern regarding the

feasibility of irreflexives was via the use of non-unary relations which they necessarily implied

and which was shown in the last section to not be problematic.

Consequently, at least with respect to the two main worries above, Wüthrich’s challenge can

be tackled by mSSR, albeit in a slightly different form of that presented by Müller himself.

4. Müller’s mSSR and the hole argument

So much for the first part of the promise of mSSR, the commitment to the existence of

spacetime points. But recall that mSSR is meant to also solve the hole argument. The obvious

question to ask in the light of the earlier discussion whether Müller’s version of mSSR can solve

the problem. If it cannot, the worry goes, then Wüthrich’s challenge might remain unanswered

after all.

In this section I find the following: An introduction of the hole argument (4.1) makes it

clear that Müller’s mSSR, as concerned with intra-world individuation, cannot solve the hole

argument itself but only be compatible with a trans-worldly individuating mSSR that itself

manages to solve the argument (4.2). A tentative version of this latter mSSR is then presented

(4.3) and found to be compatible with Müller’s stance, indicating that the above worry is

ungrounded (4.4).

4.1. The hole argument. This argument was originally discussed in (Earman and Norton,

1987). My presentation here bases on a set-theoretic version that Pooley (2006, Sec.6) develops

(based itself on (Stachel, 2006)). For any structure S = 〈B,R〉 that corresponds to a solution

of the Einstein equations, the diffeomorphism invariance of these equations implies that any

structure SΠ = 〈B,RΠ〉 ≡ 〈BΠ,R〉 that is the result of a permutation Π : B → B also

corresponds to a solution of theirs. Now introduce the possibility of giving descriptions of these

structures: Considering a structure S with |B| = N , descriptions are expressed as sentences

of first order logic (R are propositions corresponding to relations os the same label and ak

names of elements of B): Then, assuming for notational convenience that all Rn, n ≤ N can be

reconstructed by element R ∈ RN , a complete description of S, denoted RN (a), is a conjunction

of three formulas: (i) a conjunction specifying, for every N -place sequence a of the names ak

and every relation R ∈ RN either R(a) or ¬R(a); (ii) a conjunction
(∧

i 6=j ai 6= aj

)
stating that

different names name different elements of B; (iii) a disjunction
(
∀y(
∨N

i=1 y = ai)
)

stating that

the ak are the only elements of B. In this setup, a partial structural description is a formula
10



∃x1 . . . ∃x(n−m)R(b, x1, . . . , x(n−m)) that specifies only a substring c ≡ (x1, . . . , x(n−m)) of a ≡

(b, c) and is consistent with many different permutationally related structures (corresponding

to the full descriptions given by all permutations of the ’hole’-string b).

Importantly, any partial description of a structure is compatible with many complete de-

scriptions that differ by a permutation, all of which are deemed physically possible in that they

correspond to models of GR. Consequently, any position that considers structures that differ

by a permutation to represent different worlds (such as, allegedly, substantivalism) must accept

that any partial specification of a solution to the Einstein equations (specifying, say, the solu-

tion only for some time t ≤ tc) is compatible with many different possible worlds (i.e. many

solutions for t > tc). Hence, the argument concludes, any such position must interpret GR as

an indeterministic theory. A position, on the other hand, that identifies all structures related

by a permutation to represent only one world, i.e. that produces “Leibniz equivalence”, avoids

this problem.

4.2. Inter- and intra-world individuation. Greaves (2011, 201) points out that mSSR as

discussed by either Wüthrich or Müller certainly cannot avoid the hole argument in this way.

This is because these accounts are concerned with intra-world identity of spacetime points,

that is, they are discerning points within a single world. To establish Leibniz equivalence, on

the other hand, an identification of whole structures is required. If identification of manifold

points is to be useful here, it can only be via their trans-world identification, identity between

the elements of the bases of different structures.12 For this a trans-world PII (tPII) is required

while both (1) and (6) are intraworld PIIs (iPIIs).

In the light of Greaves’ point, the question concerning the ability of Müller’s mSSR to solve

the hole argument can only be indirectly tackled by asking for a trans-world mSSR that solves

the hole argument and is also compatible with the latter, in the following sense: A tPII implies

an iPII (but not vice versa)(Greaves, 2011, 202). This is because, if by virtue of a tPII some

set of structures {Si} is identified and taken to represent the same world, then the set of

invertible “transworld” maps {φj} - defined by ∃i, j : φj(Si) = Sj - induce partitions of the

manifold points in the bases Bi these structures. The elements of these partitions are formed

by all the points p, q ∈ Bi for some structure that can be related by some combination of maps

12Greaves further argues that such a transworld mSSR collapses into sophisticated substantivalism, as presented
in (Pooley, 2006).This position resolves the hole argument by rejecting haecceities. Therefore, whether Greaves’
claim is true depends primarily on whether there are non-qualitative properties that are not haecceities that are
relevant to spacetime theories, in which case the two positions would differ. In any case, this question does not
concern us here.
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φj ◦ φj′ · · · ◦ φj′′(p) = q, where we used the fact that any φj can be expressed as a mapping

between elements of bases in {Si}, just as in the case of the automorphisms ψ. Also note that

the {φj} form a group, which we call Trans({Si}). Now, the iPII that is implied by a tPII

that identifies the elements of this set then is just the iPII that identifies all members in these

elements of the partitions. Calling then any iPII that is implied by a tPII “compatible” with

it, to look for a trans-world mSSR that is compatible with Müller’s mSSR therefore is to look

for a tPII that induces (6) with Dn = Reln in the way just described.

4.3. A tPPI for mSSR. Curiously, no explicit statement of a tPII for mSSR seems to be exist

in the literature, at least to the author’s knowledge. Instead, the step from relational invariance

to identity is simply taken for granted. Consider, for example, the following quote from (Esfeld

and Lam, 2008):

“[The hole argument] can hence be avoided by claiming that there is no physical

individuation within GR of space-time points independently of the metric. In-

deed, this can be seen as the moral of the [...] invariance under certain manifold

point transformations taking one point into another together with the induced

drag-along maps acting on the tensor fields. Therefore, [...] two diffeomor-

phic space-time models of the theory should be considered as representing the

same physical situation (solution) and the same physically possible space-time

structure. This is often referred to as Leibniz equivalence in the philosophical

literature about space-time. ” (ibid., 36, orig. emph.)

The “certain manifold point transformations” alluded to are diffeomorphisms, the points in

question here are most likely manifold points of different structures and the authors slide to

transworld identification. However, it is left unspecified how such an identification should give

rise to Leibniz equivalence.13

With no help from the literature, we can nevertheless try to formulate a feasible tPII ourselves:

Two objects A and B are defined to be transworld identical, A =t B, iff there is some possible

world w1, and some distinct possible world w2, such that A exists in w1, and B exists in w2, and

A is identical with B (Mackie and Jago, 2013). In the case of mSR, what will have to ground

this is, in Stachel’s words, that elements are individuated “by their position in the relational

structure” (Stachel, 2002, 236).

13Note, further, that the authors consider the relational structure to be fully specified by the metric, in constrast
to the more general accounts discussed here.
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I take it that a notion of transworld relational indiscernability based on Stachel’s words can

be captured by the function TransRelIndn(o, o′,B,B′,R) that obtains iff, for two structures

with the same R and |B| = |B′| = N , for any n ∈ {1, . . . , N}

(1) o, a1, . . . , an ∈ B ∧ o′, a′1, . . . , a′n ∈ B′

(2) ∀k ∈ {1, . . . , n} : ak =t a
′
k

(3)

∀R ∈ Rn : (〈o, a1, . . . , an−1〉 ∈ R↔ 〈o′, a′1, . . . , a′n−1〉 ∈ R

∧〈a1, o, . . . , an−1〉 ∈ R↔ 〈a′1, o′, . . . , a′n−1〉 ∈ R

...

∧〈a1, . . . , an−1, o〉 ∈ R↔ 〈a′1, . . . , a′n−1, o
′〉 ∈ R).

This is of course reminiscent of RelInd(p, q,S,Dn). The important difference, manifest in

the absence of the paramter Dn is that TransRelInd is already a statement of mSR, namely in

requiring that two transworldly relationally indiscernible points are indiscernible with respect

to all elements of the same R.

The corresponding tPII, then states that for any two points o ∈ B, o′ ∈ B′

(16) (∃S = 〈B,R〉,S′ = 〈B′,R〉 : TransRelInd(o, o′,B,B′,R))⇒ o =t o
′.

Finally, using (16), two structures S and S′ are then identified by mSR iff all elements of

their ontologies are transworld identicalfootnoteOf course, the requirement 2 in the definition

of TransRelInd means that evaluating the identity of two structures using this tPII will be

impossible because it is circular. The argument here requires, however, only a theoretical

criterion for the identity of structures., i.e.

(17) S = S′ ⇔ o =t o
′ ∀o ∈ B, o′ ∈ B′.

Clearly, by (17), S = SΠ. In this way, (16) yields a tPII that solves the general hole argument

of Sec.4.1 and, in particular, establishes Leibniz equivalence for the case of GR in which S and

SΠ correspond to diffeomorphically related solutions of the Einstein equations.

4.4. Establishing compatibility. Finally, we are now in a position to answer the main ques-

tion of this section: Is Müller’s mSSR compatible with a transworld mSSR that solves the hole

argument? Recall from Sec.4.2, that this question boils down to asking whether (16) implies (6)

with Dn = Reln. And here the answer is clearly affirmative: (16) expresses the requirement that
13



structures be identified if they share the same relations. But this invariance of the relational

structure was just what restricted the moderate structural realist to be able to intra-worldly in-

dividuate elements of the basis using only automorphically invariant properties. In terms of the

maps φj , the automorphism group for a single structure is exactly the group that is induced by

the transworld-group in that, for every ψj ∈ Aut(Si), ∃φj , φi ∈ Trans({S}) : (φi ◦φj)(Si) ≡

ψj(Si).

Thus, if (16) gives a feasible tPII for a moderate structural realist position, then Müller’s

solution to Wüthrich’s challenge is, I conclude, successful.

Conclusion

Summing up, in this essay I discussed the ability of moderate structural realism about space-

time to commit to the existence of spacetime points while at the same time standing a chance

to solve the hole argument. In particular, I argued that a mSSR that transworldly identifies

worlds via (17) implies an iPII (6) that successfully individuates spacetime points even in highly

symmetric models of GR along the lines of Müller (2011).
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